‘Cooking’ of Ancient Organics Created Titan’s Mysterious Atmosphere

New research tackles one of the greatest mysteries about Saturn’s moon Titan: the origin of its present-day nitrogen atmosphere. Published in the Astrophysical Journal, the study suggests that Titan’s interior is likely warm, and that nitrogen from organic material in the moon’s interior may contribute on the order of 50% of its nitrogen-rich atmosphere.

An artist’s concept of a dust storm on Titan. Image credit: NASA / ESA / IPGP / Labex UnivEarthS / University Paris Diderot.

An artist’s concept of a dust storm on Titan. Image credit: NASA / ESA / IPGP / Labex UnivEarthS / University Paris Diderot.

“Titan is a very interesting moon because it has this very thick atmosphere, which makes it unique among moons in our Solar System,” said Dr. Kelly Miller, a researcher in the Space Science and Engineering Division at Southwest Research Institute.

“It is also the only body in the Solar System, other than Earth, that has large quantities of liquid on the surface. Titan, however, has liquid hydrocarbons instead of water. A lot of organic chemistry is no doubt happening on Titan, so it’s an undeniable source of curiosity.”

The atmosphere of Saturn’s largest moon is extremely dense, even thicker than Earth’s atmosphere, and is comprised mainly of nitrogen gas.

“Because Titan is the only moon in our Solar System with a substantial atmosphere, scientists have wondered for a long time what its source was,” Dr. Miller said.

“The main theory has been that ammonia ice from comets was converted, by impacts or photochemistry, into nitrogen to form Titan’s atmosphere. While that may still be an important process, it neglects the effects of what we now know is a very substantial portion of comets: complex organic material.”

Another odd aspect of Titan’s atmosphere is that it’s also about 5% methane, which reacts quickly to form organics that gradually fall to the surface.

As a result, the atmospheric methane would either have to be replenished somehow or this current period of time is simply a unique era for Titan.

The study was spurred by data from ESA’s Rosetta spacecraft, a probe that studied comet 67P/Churyumov-Gerasimenko and delivered the surprising discovery that the comet was roughly half ice, a quarter rock and a quarter organic material.

“Comets and primitive bodies in the outer Solar System are really interesting because they’re thought to be leftover building blocks of the Solar System,” Dr. Miller said.

“Those small bodies could be incorporated into larger bodies, like Titan, and the dense, organic-rich rocky material could be found in its core.”

To study the Titan mystery, Dr. Miller and co-authors combined existing data from organic material found in meteorites with previous thermal models of the moon’s interior to see how much gaseous material could be produced and whether it was comparable to the atmosphere now.

Following the standard rule of, ‘If you cook something, it will produce gases,’ the scientists found that approximately half of the nitrogen atmosphere, and potentially all of the methane, could result from the ‘cooking’ of these organics that were incorporated into Titan at its very beginning.


Kelly E. Miller et al. 2019. Contributions from Accreted Organics to Titan’s Atmosphere: New Insights from Cometary and Chondritic Data. ApJ 871, 59; doi: 10.3847/1538-4357/aaf561


About Skype

Check Also

NASA Invests in Technology to Map the Moon and Mine Asteroids

  NASA plans to return to the moon in the next decade, and it won’t …

Leave a Reply

Your email address will not be published. Required fields are marked *